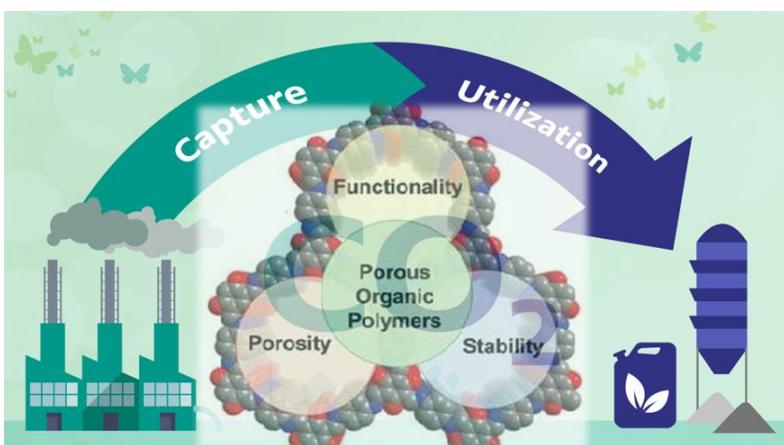


Dr. John Mondal

Principal Scientist


Organic & Medicinal Chemistry Division

CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700032, India,

Email: johnmondal@iicb.res.in

Design of Advanced Porous-Organic-Polymer (POP): Unifying System for CO₂ Capture & Utilization

Abstract: CO₂ emissions from the global use of fossil fuels are expected to exceed 45 billion tonnes by the year 2040. At the 26th Conference of Parties (CoP26), India committed to reduce the total projected carbon emissions by one billion tonnes from now onwards till 2030. Hence, there is a growing demand for the development of effective carbon capture and utilization (CCU) technologies to minimize the atmospheric CO₂ levels. Absorption technology for carbon capture is limited by high energy requirement for solvent regeneration, solvent degradation and corrosion issues. In contrast, adsorption-based technologies are limited by the availability of adsorbents with high CO₂ adsorption capacity, selectivity, regenerability and long life. Considering CO₂ utilization aspect, with the various available strategies, photochemical CO₂ reduction to hydrocarbon fuels and other high-value chemicals has attracted the attention because it offers a road to clean, cost-effective, energy-efficient, and sustainable CO₂ reduction pathway. In addition, superior product selectivity, higher efficiency, and long-term CO₂ reduction durability can be achieved *via* photochemical approaches, which subsequently turn anthropogenic CO₂ into a valuable commodity. Our research group played a pioneering role to explore a variety of Porous-Organic-Polymers (POPs) with high surface areas, low skeleton density, controllable compositions, powerful nanoconfinement effects which have provided a new dimension in photocatalytic CO₂ reduction to value added chemicals, selective CO₂ adsorption, photocatalytic CO₂ fixation, thereby announcing new opportunities for various specific topics in the advancement of CCU technologies in the near-future.

References: *J. Am. Chem. Soc.* **2023**, *145*, 422-435; *Angew. Chem. Int. Ed.* **2023**, *62*, e202311304; *Small* **2024**, *20*, 2305307; *ACS Appl. Mater. Interfaces* **2024**, *16*, 22066-22078.

日時: 1月23日 16:30~17:30
場所: 理学部C棟C612

連絡教員: 石谷 治, 鴨川 径(内線: 7340)